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1. 

The transverse vibration of circular and annular plates with variable thickness has been
studied by several researchers. Prasad et al. [1], Luisoni et al. [2], and Grossi and Laura
[3] have discussed the axisymmetric vibration of the circular plates with linearly varying
thickness. Laura and Valerga de Greco [4], and Singh and Saxena [5] have studied circular
plates with double linear variable thickness. Singh and Chakraverty [6], Barakat and
Baumann [7], and Lenox and Conway [8] have investigated the case of circular plates
having parabolic thickness variation. However, most investigations in the references were
for some special case of thickness variations and special boundary conditions. Generally
speaking, the finite element method has the advantage of extensive applicability. By using
this method, any circular plate with variable thickness can be modelled by a series of
elements with different thickness and the boundary conditions are easy to treat also. But
calculations have proved that the general elements with uniform thickness or linear
variable thickness are not very effective and not very accurate for analysing the transverse
vibration of circular plates with variable thickness. In many cases a great number of
elements are used and poor convergence is obtained.

In this paper annular elements with variable thickness are employed for the analysis of
the axisymmetric vibration of circular and annular plates with arbitrarily varying
thickness. Provided the function of the plate thickness is known, the thickness of the
elements will vary according to the function, so the modelled structure is exactly the same
as the actual one. The element matrices are calculated by combining the analytical and
the numerical methods. Comparison with available exact results proved that the first five
frequencies obtained by this method have more than four significant digits.

2.   

The vibrating mechanical system being considered is shown in Figure 1. The geometric
center of the plate is chosen as the origin of the polar co-ordinate, (r, u, z), system. The
plate has an outer radius a, inner radius b, and a variable thickness h= h0f(r), where h0

is the plate thickness of a certain reference point, f(r) is an arbitrary function of the radial
co-ordinate r. The outer edge is elastically restrained against rotation and translation. F

is the flexibility of the rotational boundary spring and K is the translational spring
constant. The whole plate is descretized into N elements. Each element has three nodes
(the two ends and the middle point) and each nodal point has two degrees of freedom
(W, C) representing the transverse displacement and the slope respectively, shown in
Figure 2. For the sake of convenience, the following transformations are introduced to
convert the variables into non-dimensional forms

X=W/a, z= z/a, j= r/a
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Figure 1. The vibrating mechanical system under study

To calculate the element stiffness matrices and the element mass matrices conveniently by
using Gauss quadrature, the domain of the whole element [ji−1, ji+1] is linearly
transformed to the domain [h=−1, h=1] by introducing the parameter h=(j− ji )/s.
Where the non-dimensional width s=(a− b)/2Na. Assume the element displacement is
of the following form

X= a1 + a2h+ a3h
2 + a4h

3 + a5h
4 + a6h

5 (1)

The generalized co-ordinates ai (i=1, 6) can be determined by the nodal displacements Xi

and the nodal slopes Ci =X'i , where the prime of X denotes the partial derivative of X
with respect to j. So the interpolation polynomials are obtained and one has

X(h, t)= [N]T{X(e)} (2)

{X(e)} is the nodal displacement vector defined as

{X(e)}=[Xi−1, X'i−1, Xi , X'i , Xi+1, X'i+1]T (3)

The strain–displacement relation for a thin plate is

{o}=6or

ou7=−z6 W0
(1/r)W'7 (4)

where the primes of W denote the partial derivatives of W with respect to r. The linear
relation between the strain and stress is assumed to be

{s}=6sr

su7=
E

1− n2 [C]6or

ou7 (5)

where

[C]=$1 n

n 1%

Figure 2. A finite element with variable thickness
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The potential energy of the whole system equals

U=UP +UF +UK =
1
2 g {s}T{o} dV+

pa
F

(X')2
j=1 + pa3K(X)2

j=1 (6)

where UP , UF , UK denote the potential energies of the plate, the spring against rotation
and the spring against translation, respectively. Similarly, the kinetic energy of the system
is

T=TP =
1
2 g rW� 2 dV (7)

where TP is the kinetic energy of the plate, W� is the partial derivative of W with respect
to time t. Substituting U and T into Lagrange’s equations and using equations (2), (4) and
(5), one has the equation of motion of the system

[M]{X� }+[K]{X}=0 (8)

The mass matrix [M] and the stiffness matrix [K] are obtained by the usual assembly
procedure and the element matrices are

[M(e)]=
D0

a2h0 g [N][N]T dV=2pD0S g
1

−1

[N][N]Tf(j)j dh (9)

[K(e)]=
12D0

s2h3
0 g $1s N0, 1

j
N'%[C]$1s N0, 1

j
N'%

T

j2 dV

=
2pD0

s g
1

−1 $1s N0, 1
j

N'%[C]$1s N0, 1
j

N'%
T

f 3(j)j dh (10)

where the primes denote the derivatives with respect to h. The calculation of the element
mass matrices and the element stiffness matrices are performed analytically along the
circumference and thickness directions, but numerically along the radial direction. Six
point Gauss quadrature is used for the integration. An iteration method is chosen for
solving the eigenvalue problem obtained from equation (8).

T 1

Convergence of frequencies of circular plate with simply supported boundary and uniform
thickness; n=0·3

Element
number (N) V1 V2 V3 V4 V5 V6

1 4·93515 29·80606 75·90850 – – –
2 4·93515 29·72054 74·24724 139·37271 229·01475 363·35686
4 4·93515 29·72001 74·15634 138·32744 222·31920 326·43071
6 4·93515 29·72000 74·15607 138·31844 222·21878 325·88265
8 4·93515 29·72000 74·15606 138·31815 222·21544 325·85201

10 4·93515 29·72000 74·15606 138·31813 222·21511 325·84970

[9] 4·93515 29·72000 74·15605 138·31812 222·21491 324·94466
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T 2

Circular plate with simply supported boundary and linear thickness variation: h= h0(1+ aj);
n=0.3. Lower parenthesized values are from reference [5]

a V1 V2 V3 V4 V5

−0·8 2·57637 15·40097 38·62459 72·16631 116·04000
(2·5764) (15·401) (38·626) – –

−0·6 3·25156 19·40902 48·84579 91·47257 147·27308
(3·2516) (19·409) (48·847) – –

−0·4 3·83633 23·00497 57·83166 108·24111 174·21376
(3·8363) (23·005) (57·832) – –

−0·2 4·39096 26·41477 66·18976 123·69606 198·92450
(4·3910) (26·415) (66·190) – –

0·0 4·93515 29·72000 74·15606 138·31813 222·21511
(4·9351) (29·720) (74·156) – –

0·2 5·47701 32·95984 81·85122 152·35505 244·50314
(5·4770) (32·960) (81·852) – –

0·4 6·02014 36·15611 89·34650 165·95415 266·03714
(6·0202) (36·157) (89·351) – –

0·6 6·56616 39·32213 96·68795 179·21129 286·97907
(6·5662) (39·324) (96·701) – –

0·8 7·11572 42·46658 103·90726 192·19289 307·44133
(7·1159) (42·470) (103·94) – –

1·0 7·66899 45·59535 111·02728 204·94713 327·50562
(7·6693) (45·602) (111·08) – –

3.    

To ascertain the characteristics of convergence of this method, a uniform circular plate
with a simply supported boundary is chosen for calculation and compared with existing
references. The frequency parameters Vi =vi (rh0a4/D0)1/2 of the circular plate with uniform

T 3

Annular plate with linear thickness variation: h= h0(1+ aj); n=0·3. Lower parenthesized
values are from reference [10]

Boundary Hole
a condition size b/a V1 V2 V3 V4 V5

−0·3 C–S 0·3 24·85620 81·12467 169·81045 290·83299 444·16888
(24·857) – – – –

−0·3 0·5 47·44856 154·14603 321·97259 550·87172 840·83074
(47·467) – – – –

−0·3 C–C 0·3 36·11578 100·13684 196·91384 326·00444 487·41047
(36·118) – – – –

−0·3 0·5 68·79539 190·16896 373·28806 617·44029 922·65718
(68·824) – – – –

0·3 C–S 0·3 34·92943 119·22132 251·33345 431·49716 659·70949
(34·908) – – – –

0·3 0·5 72·01501 241·44484 507·20106 869·58205 1328·58935
(72·021) – – – –

0·3 C–C 0·3 54·34590 149·90375 294·02510 486·17811 726·39017
(54·319) – – – –

0·3 0·5 109·46483 301·81564 591·75764 978·27030 1461·42278
(109·477) – – – –
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thickness are shown in Table 1. There vi are the angular frequencies, D0 =Eh3
0 /12(1− n2),

is the flexural rigidity of the plate at the reference point, r is the density of the plate
material, E and n denote Young’s modulus and the Poisson ratio, respectively. From
Table 1 it is obvious that the method has very good convergence characteristics. Only one
element is needed to obtain six significant digits of the fundamental frequency. By using
eight elements, the first five frequencies obtained more than six digits converge and are
in good agreement with the values of reference [9].

The convergence of the method for other cases has been tested also. Generally
speaking, the lower frequencies converge faster than the higher ones. By using ten
elements, except in some extreme cases, the first five frequencies converge to about five
significant digits. So the number of elements is fixed as N=10 for all following
computations.

Table 2 shows the case of circular plate with linear variable thickness and simply
supported boundary. Comparison with reference [5] has been made. For the first three
comparable frequencies, there are at least four digits consistent with each other.

T 4

Circular plate with clamped boundary and double linear thickness variation†. Lower
parenthesized values are from reference [5]

a b1 b2 V1 V2 V3 V4 V5

0·25 −0·5 −0·5 6·15036 27·30022 63·06113 113·26669 177·88499
(6·1504) (27·300) (63·062) – –

0·0 8·97072 35·14633 78·82361 140·00509 218·87699
(8·9707) (35·146) (78·829) – –

0·5 11·82429 42·10190 92·17991 162·39140 253·19873
(11·824) (42·104) (92·213) – –

0·0 −0·5 7·40320 32·06089 73·74515 132·28018 207·47496
(7·4033) (32·061) (73·746) – –

0·0 10·21583 39·77115 89·10414 158·18423 247·00655
(10·216) (39·771) (89·104) – –

0·5 13·06585 46·72655 102·38859 180·33170 280·82948
(13·066) (46·727) (102·39) – –

0·5 −0·5 8·64704 36·76911 84·33698 151·09455 236·59153
(8·6472) (36·770) (84·345) – –

0·0 11·45481 44·38622 99·40194 176·34516 274·94339
(11·455) (44·387) (99·413) – –

0·5 14·30214 51·34801 112·63595 198·27915 308·31039
(14·302) (51·349) (112·64) – –

0·5 −0·5 0·0 7·84489 31·47870 71·12663 126·76694 198·27951
(7·8449) (31·480) (71·131) – –

0·5 9·51748 35·02541 78·08897 137·90047 215·31258
(9·5176) (35·031) (78·099) – –

0·0 −0·5 8·51335 35·91994 81·89586 146·23172 229·08052
(8·5134) (35·920) (81·897) – –

0·5 11·90788 43·15254 95·57903 168·49948 262·67303
(11·908) (43·153) (95·580) – –

0·5 −0·5 10·86518 44·45527 99·82141 177·60437 277·22232
(10·865) (44·458) (99·829) – –

0·0 12·58700 48·08992 106·49784 188·56112 293·60242
(12·587) (48·092) (106·50) – –

† h=6h0(1+ b1j)
h0[1+ b1a+ b2(j− a)]

0E jE a
aE jE 1, n=0·3.
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Table 3 shows the case of an annular plate with linear variable thickness and clamped
inner edge. The outer edge of the plate is simply supported (C–S) or clamped (C–C).
Comparison has been made with reference [10]. For all the calculated cases, at least three
digits of the fundamental frequencies are the same.

The first five frequency parameters of the circular plate with double linear variable
thickness and clamped boundary are listed in Table 4. By comparison with reference [5],
that for any combinations of the thickness parameters a, b1 and b2, the results obtained
in this investigation agree well with those by Singh and Saxena. Three or four significant
digits can be determined for the first three frequencies. The case of linear variable thickness
occurs when b1 = b2 = b and no matter what values a takes, the same results are obtained.
So the three cases: (i) b1 = b2 =−0·5; (ii) b1 = b2 =0; (iii) b1 = b2 =0·5, are listed only
once under a=0·25.

Table 5 is for the case of an annular plate with parabolic variable thickness. It may be
noted that the values obtained for most boundary conditions and hole sizes agree well with
reference [8]. But for the C–C boundary condition and b/a=0·1, the inner edge of the

T 5

Annular plate with parabolic thickness variation: h= h0j
2; n=1/3. Lower parenthesized

values are from reference [8]

Boundary Hole
condition size (b/a) V1 V2 V3 V4 V5

F–F 0·1 0·00000 4·20486 9·08725 16·75817 28·10988
(0·00) (4·20) (9·09) – –

0·3 0·00000 4·59348 19·86527 47·54915 88·66421
(0·00) (4·59) (19·87) – –

0·5 0·00000 5·89940 50·76553 133·32232 256·88484
(0·00) (5·90) (50·77) – –

0·7 0·00000 9·79196 179·95138 489·72451 955·60526
(0·00) (9·79) (179·95) – –

0·9 0·00000 31·18839 2019·50110 – –
(0·00) (31·19) (2019·50) – –

F–S 0·1 2·85096 8·55271 15·62301 26·27190 40·52744
(2·85) (8·55) (15·62) – –

0·3 2·99851 17·29690 42·24280 80·27911 131·69072
(3·00) (17·30) (42·24) – –

0·5 3·61347 41·24071 114·52250 228·17319 382·60299
(3·61) (41·24) (114·52) – –

0·7 5·54860 136·73412 409·57751 836·99167 1419·21664
(5·55) (136·73) (409·58) – –

0·9 16·26057 1437·25790 4548·94386 9439·72791 –
(16·26) (1437·26) (4548·95) – –

C–C 0·1 8·79749 16·56247 28·14739 43·57505 63·03111
(8·77) (16·44) (27·84) – –

0·3 19·26351 47·13877 88·35806 143·04749 211·28147
(19·26) (47·14) (88·36) – –

0·5 50·06709 132·88355 256·56713 421·13868 626·71458
(50·97) (132·88) (256·57) – –

0·7 179·22217 489·27490 955·28270 1576·16420 2352·12946
(179·22) (489·28) (955·28) – –

0·9 2018·66049 5559·85842 – – –
(2018·76) (5560·17) – – –
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T 6

Circular plate with simply supported boundary and parabolic thickness variation:
h= h0(1+ aj2); n=0·25. Lower parenthesized values are from reference [7]

a V1 V2 V3 V4 V5

−0·8 3·32406 19·14402 48·59039 90·79214 145·78036
(3·149) (18·64) – – –

−0·6 3·77091 22·41000 56·48379 105·60273 169·77699
(3·728) (22·22) – – –

−0·4 4·14551 25·07938 62·99447 117·74552 189·33203
(4·135) (25·03) – – –

−0·2 4·50253 27·45898 68·78141 128·46757 206·51809
(4·501) (27·45) – – –

0·0 4·86013 29·66215 74·10139 138·26481 222·16253
(4·860) (29·66) – – –

0·2 5·22582 31·74490 79·08692 147·39605 236·69739
(5·225) (31·75) – – –

0·4 5·60279 33·73945 83·81720 156·01708 250·38268
(5·602) (33·73) – – –

0·6 5·99219 35·66622 88·34412 164·23049 263·38959
(5·990) (35·65) – – –

0·8 6·39412 37·53903 92·70388 172·10816 275·83799
(6·391) (37·51) – – –

plate is too thin (one percent of the thickness of the outer edge) and the mode shapes
change sharply within a small region around the inner edge. In such an extreme case the
convergence rate becomes lower and more elements are needed to provide the needed
accuracy.

Table 6 shows the case of a circular plate with parabolic variable thickness. Comparison
with reference [7] has been made. When the thickness parameter aq−0·4, the results
agree with each other better than when aQ−0·4.

From the above results it is obvious that the finite element method presented here is
a very effective and convenient method of calculating the frequencies and mode shapes (not
plotted here) of circular plates and annular plates with various boundary conditions and
various thickness variations. Assigning values other than 0 and a to F and K, one can
easily compute the cases of plates with elastically restrained boundaries. As another
example of applications, circular plate with simply supported boundary and cubic
thickness variation has been calculated and the first five frequencies are listed in Table 7.

T 7

Circular plate with simply supported boundary and cubic thickness variation: h= h0(1+ aj3);
n=0·3

a V1 V2 V3 V4 V5

−0·8 3·85702 21·63200 54·46845 101·60838 162·97078
−0·6 4·16938 24·35194 60·86754 113·48997 182·20038
−0·4 4·42986 26·41676 65·91026 122·91292 197·42424
−0·2 4·68031 28·16485 70·25556 131·03640 210·51304

0·0 4·93515 29·72000 74·15606 138·31813 222·21511
0·2 5·20079 31·14317 77·74051 144·99563 232·92072
0·4 5·48021 32·46934 81·08517 151·21135 242·86456
0·6 5·77465 33·72067 84·23963 157·05888 252·20104
0·8 6·08439 34·91214 87·23832 162·60363 261·03822
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

One concludes from the results that the finite element method described here is an
efficient and convenient tool for computing the frequencies and mode shapes for
axisymmetric vibration of circular and annular plates with various boundary conditions
and various thickness variations. The first five frequencies for some special cases have been
listed and compared with the results available in the literature. Comparison has proved
that the results obtained have very high accuracy. Part of the results presented here are
new and are not available elsewhere.
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